= 'google.colab' in sys.modules
IN_COLAB = 'kaggle_secrets' in sys.modules
IN_KAGGLE = IN_COLAB or IN_KAGGLE IS_REMOTE
Widgets
This creates a ImageClassifierCleaner variation which works with ImageDataLoaders
Compatibility Block
Check Platform
Platform & Environment Configuration
Imports
Public Imports
Private Imports
Pandemic Safety
Our dataset consist of images labelled as mask or no_mask. We will do following steps
- Build a classifier on raw version of data
- Review images with highest confusion. Identify images we would, like to keep, relabel or skip
DataBlocks and DataLoaders
In present example, I will use image.csv to generate items and labels. Advantages are:-
- I don’t have to delete any file
- I can manage modifications to dataset in a new csv file and upload the version on Datasette for future review
- dataloaders has a path argument. To be consistent with fastai dataloader we need to supply path for df execution
We will get list of fnames and labels from dataframe. If we require cleaning we will save any data modifications in new csv which we can then upload to datasette. This way our data stays immutable.
doc(DataBlock)
DataBlock
DataBlock(blocks:list=None, dl_type:TfmdDL=None, getters:list=None, n_inp:int=None, item_tfms:list=None, batch_tfms:list=None, get_items=None, splitter=None, get_y=None, get_x=None)
Generic container to quickly build `Datasets` and `DataLoaders`.
def get_image_df(path, csvfile='image.csv', rel_path_col='rel_path', folder_col='label', fname_col='fn'):
= pd.read_csv(path/csvfile)
df if rel_path_col not in df.columns.tolist():
= df[[folder_col, fname_col]].apply(lambda x: f'{x[0]}/{x[1]}', axis=1)
df[rel_path_col] return df
def get_images_from_df(path, df=None, rel_path_col='rel_path'):
if df is None or df.empty: raise Exception(("df is required"))
return L(df[rel_path_col].values.tolist()).map(lambda x: path/x)
= get_image_df(path)
df =df) get_images_from_df(path, df
(#309) [Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/7a8b0909-4f5c-4d53-b1bc-f35a83a022c9.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/1f54d9ac-4a0e-42fe-98cb-09938a3104b0.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/d08a498f-27cf-4668-a4f1-af32dfd15416.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/52601346-132e-4217-ab57-6c324c1e4eee.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/78ac55fb-2db3-48e9-bdcc-4caa2a50e3f6.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/5eeec12d-174e-4d1d-a261-8dcd99ea9b8b.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/f048f38a-3758-428d-8d9f-8462a4e272d0.jpeg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/cfbe3224-4ec8-47f6-8ee8-d637572b2787.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/b2b14d80-ddf9-4e4a-9b61-afdbabb1cf9d.jpg'),Path('/mnt/d/rahuketu/programming/AIKING_HOME/data/PandemicSafety/No_Mask/d7a7b4e3-4756-4294-88d6-6c23a7ba6741.jpg')...]
def get_y_df(o, path=None, df=None, label_col='label', rel_path_col='rel_path'):
if df is None or df.empty: raise Exception(("df is required"))
if path is None: raise Exception("Path is required")
return df.loc[df['rel_path']==str(o.relpath(path)), 'label'][0]
= get_images_from_df(path, df=df)[0]; (o, str(o.relpath(path)))
o =path, df=df) get_y_df(o, path
'No_Mask'
Model Training
Classification Interpretation
Where do we see high losses?
- When model predicts incorrect class with high confidence.
- When model predicts correct class but the confidence low.
Data Cleaning Widget
ImagesCleaner.set_fns_with_vals
ImagesCleaner.set_fns_with_vals (fns_vals)
PersistentImageClassifierCleaner
PersistentImageClassifierCleaner (learn, opts:tuple=(), height:int=128, width:int=256, max_n:int=30)
A widget that provides an ImagesCleaner
with a Vision Leaner
Type | Default | Details | |
---|---|---|---|
learn | |||
opts | tuple | () | Options for the Dropdown menu |
height | int | 128 | Thumbnail Height |
width | int | 256 | Thumbnail Width |
max_n | int | 30 | Max number of images to display |